Extensions 1→N→G→Q→1 with N=C2 and Q=C42.7C22

Direct product G=N×Q with N=C2 and Q=C42.7C22
dρLabelID
C2×C42.7C2264C2xC4^2.7C2^2128,1651


Non-split extensions G=N.Q with N=C2 and Q=C42.7C22
extensionφ:Q→Aut NdρLabelID
C2.1(C42.7C22) = (C4×C8)⋊12C4central extension (φ=1)128C2.1(C4^2.7C2^2)128,478
C2.2(C42.7C22) = C42.379D4central extension (φ=1)64C2.2(C4^2.7C2^2)128,482
C2.3(C42.7C22) = C42.45Q8central extension (φ=1)128C2.3(C4^2.7C2^2)128,500
C2.4(C42.7C22) = C4⋊C43C8central extension (φ=1)128C2.4(C4^2.7C2^2)128,648
C2.5(C42.7C22) = C22⋊C44C8central extension (φ=1)64C2.5(C4^2.7C2^2)128,655
C2.6(C42.7C22) = C42.95D4central stem extension (φ=1)64C2.6(C4^2.7C2^2)128,530
C2.7(C42.7C22) = C24.53(C2×C4)central stem extension (φ=1)64C2.7(C4^2.7C2^2)128,550
C2.8(C42.7C22) = C42.23Q8central stem extension (φ=1)128C2.8(C4^2.7C2^2)128,564
C2.9(C42.7C22) = C424C4.C2central stem extension (φ=1)128C2.9(C4^2.7C2^2)128,572
C2.10(C42.7C22) = (C2×C8).Q8central stem extension (φ=1)128C2.10(C4^2.7C2^2)128,649
C2.11(C42.7C22) = C23.9M4(2)central stem extension (φ=1)64C2.11(C4^2.7C2^2)128,656

׿
×
𝔽